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We generalize the model of self-organized critical systems to cases where due to 
some internal degrees of freedom the local conservation law is violated. This can 
be realized by taking a transfer ratio different from the critical one in a sand pile 
model (global violation) or allowing fluctuations around the critical ratio (local 
violation). In the first case the deviation from the critical ratio R is a critical 
parameter and the characteristic avalanche size diverges as JR[-q'. In the second 
case the global conservation assures criticality; however, our numerical results 
indicate that the model is in a new universality class. 

KEY WORDS: Self-organized criticality; conservation; fluctuations; univer- 
sality. 

1. I N T R O D U C T I O N  

Diss ipat ive  systems which drive themselves into a cri t ical  state are called 
self-organized cri t ical  systems (SOC)  by B a k e t  al. 11~ (BTW).  F o r  i l lustra-  
t ion they in t roduced  a toy sand-pi le  mode l  where the essential  po in t  is the 
local  conserva t ion  law (conserva t ion  of sand grains)  and  the existence of a 
crit ical height  difference above  which the grains  topple  down. Avalanches  
genera ted  by an external  pe r t u rba t i on  can be observed  on all length scales 
and  their  size and lifetime d is t r ibu t ions  obey power  laws. ~1 4~ Original ly ,  
the S O C  were though t  to be responsible  also for 1/ f  or  flicker noise,~l) but  
it was d e m o n s t r a t e d  that  general ly  the scal ing of the lifetimes and  sizes 
does  not  necessar i ly  lead to a nont r iv ia l  power  spectrum. ~5'6) 

Exper imenta l  work  re la ted to S O C  has been carr ied out  on sand 
piles, (6) water  d rops  on a window pane,  ~7) and magnet ic  d o m a i n  struc- 
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tures.(8~ Possible relations to semiconductor physics/1) and earthquakes i~~ 
have also been emphasized. Of course, many fractal growth phenomena (11~ 
can also be considered as SOC, and relations to other models of statistical 
physics have been established in analytical calculations. (12 15) 

The term self-organized criticality was invented in order to emphasize 
that, in contrast to usual systems where fine tuning is necessary, in the 
considered models and physical problems criticality is built up spon- 
taneously. Using the sand pile language, the slope of the pile (which could 
play the role of the temperature (16)) is driven automatically to criticality 
such that avalanches on all scales appear. However, a restriction on 
another parameter of the problem has to be made: The perturbation 
(external sand flux) has to be infinitesimally small. 

A crucial point in obtaining SOC behavior is that a conservation law 
for the fluctuating variable should hold. (1'12'17) For sand grains this is a 
natural assumption; however, for systems with some hidden degrees of 
freedom conservation could be globally or locally violated. For example, in 
a system where the cellular automaton equations (see below) are written 
down for some sort of energy variable, conservation could be violated 
globally by pure dissipation and locally by exchange with the host lattice. 
We shall mention specific examples in later parts of this paper. 

Our aim here is to investigate the effect of global and local violation 
of conservation on the SOC behavior. In Section 2 we discuss the role of 
conservation in building up the SOC state and describe possible ways 
leading to violation of conservation. It turns out that the degree of the 
global violation is a critical parameter and in Section 3 we show our 
corresponding numerical results. In the case of the local violation of the 
conservation law, where, globally, on the average, conservation holds, criti- 
cality is maintained, however, with nonuniversal exponents (Section 4). We 
close the paper with a discussion and a summary. 

2. CONSERVATION LAWS AND CASCADES 

The original paper of Bak et al. ~1) used the picture of sand piles. A 
discrete height variable z defined on a d-dimensional lattice describes the 
state of the system. The excitation is given by increments of unity of z at 
random positions. If a prescribed uniform threshold zc is reached at some 
site, a "sliding" takes place: A part of the sand above that site is distributed 
among the neighbors. For the square lattice, which is our concern hence- 
forth, we have 

z(x, y ) ~ z ( x ,  y ) - 4  (la) 

z (x+ 1, y +  1 ) ~ z ( x  + 1, y +  1)+ 1 (lb) 
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These equations express the conservation of sand grains. After a sliding, 
a grain may raise the sand above the threshold at a neighbor; a new 
sliding takes place and so on, so that avalanches are created. Due to the 
conservation, (12) the avalanches do not have a characteristic size: The self- 
organized critical state develops. The conservation is manifested in the fact 
that the transfer ratio r is unity, r = (number of particles sliding down)/ 
(number of particles appearing at the neighbors). 

There are many areas of physics and also other fields where in such 
chain reactions avalanches or cascades develop. However, the conservation 
necessary to achieve criticality is not always assured. The transfer ratio 
describing the elementary events is often an externally variable parameter 
and/or it is a random quantity. We give a short list of examples for systems 
with random transfer ratio having an externally controllable mean: 

(i) In nuclear reactors where the avalanches of thermal neutrons are 
the relevant objects, the average transfer ratio is externally controlled by 
the cadmium rods to keep the reactor working in the critical mode. ~ 

(ii) In avalanche diodes the electrical field strength (that is, the 
voltage on the diode) is the external parameter which determines the 
average transfer ratio (so-called multiplication factor of hot electrons). (]9) 

(iii) In lasers the externally variable pumping energy determines the 
average transfer ratio. (2~ 

According to these considerations we generalize Eq. (1): 

z(x, y; t +  1) =z(x,  y; t ) - A ( x ,  y; t) (2a) 

z(x+_ 1, y+_ 1; t +  1) =z(x_+ 1, y_+ 1; t )+B(x ,  y; t) (2b) 

again for the square lattice. Now the transfer ratio is a fluctuating quantity 
and the average <r> = <A/4B> can be different from unity. 

For numerical inverstigations we generalized the SOC cellular 
automaton used by Kadanoff et al. {21) and Manna. (2) The system is excited 
at randomly chosen sites (x, y) by increments C which we took as constant 
in one simulation, 

z(x, y; t+  1) = z(x, y; t ) + C  (3) 

In practice we take always C =  <B>. When the z(x, y) reaches an arbitrary 
constant threshold value zc, then a sliding described by Eqs. (2) takes 
place. The mean <r> of the transition ratio r(x, y; t) and its deviation R 
from the value belonging to the (local) conservation can be written as 

<r> = <A(x, y; t) >/4C (4a) 

R =  1-- <r> (4b) 
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respectively. Obviously, R is a "fine tuning parameter" corresponding to 
the physical situations described above. 

We carried out two kinds of related numerical experiments. In the first 
one, to be described in the next section, we dealt with the case 

A(x, y ) - - A > 4 C  (5) 

where the conservation is homogeneously violated in space. In the second 
computation we kept R = 0 (global conservation holds) and investigated 
the effect of fluctuations, i.e., of local violations of conservation. For this 
second case the applied relations are 

A(x, y; t) = 4 + ~(x, y; t) (6a) 

C =  1 (6b) 

where ~ is a uniformly distributed random integer number in the range 
[ - 3 ,  3]. The random number is generated at the point (x, y) whenever a 
sliding takes place there. 

3. SUBCRIT ICAL A V A L A N C H E S  

First, we remark on the meaning of the distribution functions by 
which we described the statistics. We use the term "distribution function" 
D(a) for the probability density of a and the term "integrated distribution 
function" for the integral 

P(a) = D(a') da' (7) 

of the probability density. For the experimental investigation the 
application of the integrated distribution is often better, because it is less 
sensitive for the scattering of data. [-Of course, if D ( a ) ~ a  ~, then the 
integrated distribution is also a power function: P(a)~  a 1-~.] 

In this section, we present the results of computer simulations on the 
cellular automaton defined by Eqs. (2) (4) under the condition given by 
relation (5), i.e., we consider the case of global violation of the conserva- 
tion. If the transfer ratio is larger than unity (R < 0), the avalanches are 
expected to have a characteristic lifetime after which they die out. For 
R > 0 the avalanches explode after a characteristic time. We concentrate on 
the first case, since it is easier to investigate. 

We took an L • L =  256 x 256 square array, and measured the dis- 
tribution function of the avalanche sizes. The integrated corresponding 
distribution functions are shown in Fig. 1 for several transition ratios R. It 
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Fig. 1. Integrated avalanche size distributions in the subcritical region. R=0.8,  0.4, 0.2, 0.1, 
and 0.05 from right to left. The distribution can be described asymptotically as D(s)~ 
exp(s/s*) with s * =  14.85, 28.06, 55.10, 116.5, and 250.7, leading to s*(R) ~ IRI-o.98+oo5 

can be seen that in the large-s limit the distribution is an exponential 
function: 

D(s  ) ~ exp  [ - s / s*(  R ) ] (8) 

where s is the total number of impacts (number of particle moves) in an 
avalanche and s * ( R )  is the characteristic avalanche size. This characteristic 
length turns out to be related to R by the following scaling: 

s * ( R )  ,.~ JR[ ~ (9) 

By analyzing our data we find for the exponent ~ approximately 1 (cf. 
Fig. 1 ). 

This dependence of s* on R is in full analogy with usual critical 
phenomena where R plays the role of the reduced temperature. The 
parameter R corresponds to the fine tuning parameters in the physical 
phenomena mentioned above which control the processes and assure criti- 
cality if it is desired. The correspondence to criticality is also expressed in 
the increasing fluctuations when approaching R = 0 :  this can clearly be 
seen in the plot in Fig. 1. 
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4. LOCALLY VIOLATED CONSERVATION 

In the former section we showed that upon taking an R different from 
0, the system is driven out of criticality. It is natural to assume that R = 0 
is enough to provide criticality irrespective of the possible local deviations 
from this global conservation condition. However, it is possible that the 
exponents characterizing the universality class of the models will be 
different from those obtained for global conservation. 

In order to investigate the situation with locally violated conservation, 
we allowed fluctuations around the value (A> for down slidings 
[according to Eqs. (6)]. This was implemented in the following way: 
Whenever the critical height zc was reached we generated an integer 
random number ~ e [ - 3 ,  3] and introduced the move z = ~ z - 4  + ~. The 
increments at the neighbors remained always equal to unity. 

We have carried out simulations on L x L lattices with L =  16 x 2 ~, 
I = 0, 1 ..... 6, and generated 105 106 avalanches. The larger the lattice is, the 
better is the critical behavior developed, and therefore the simulations 
become exceedingly time consuming. Accordingly, one needs large samples 
in order to see the power laws, but if the sample is very large, the statistics 
obtained in the available computer time will not be satisfactory. We have 
found that the results for L = 512 were the most useful. 

In Fig. 2, the integrated distribution function of avalanche sizes is 
shown for system size L=512 .  The integrated distribution is a power 
function; consequently, the distribution function D(s) is also a power 
function: 

D(s) ~ s  -~ (10) 

However, the exponent ~ has a systematic system size dependence (6 %), in 
accordance with the simulations without fluctuations/z) We obtained 
~= 1.515+_0.020 from our data by a parabolic extrapolation to L ~  oo in 
a r vs. 1/L plot. We can compare our exponent r with the value 1.22 
obtained (2) for the system having no local conservation violation, r = 1. 

For  the critical system one expects a power law decay also in the 
distribution function D(T) of avalanche lifetimes. The measured integrated 
distribution is plotted for L = 512 in Fig. 3; it is indeed a power function 
in a wide range. 

Consequently, the distribution function is a power function, too: 

D ( T ) ~  T -y (11) 

The effective exponent y shows again a systematic system size dependence 
(8 %). A similar extrapolation to L ~ oo as described above leads to y = 
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2.00 +_ 0.03. This value is again significantly different from the case where 
no local violation of conservation is allowed(Z): y = 1.38. 

The dependence of the avalanche lifetime T on the avalanche size s is 
also a power function (see Fig. 4): 

T ( s ) , . . s  ~ (12) 

The obtained numerical value for this exponent is x=0 .51  +0.,01, which 
satisfies the relation (5'~) x =  ( 1 -  t ) / ( 1 -  y). It is interesting to note that in 
spite of the size-dependent effective exponents z and y, x is rather insen- 
sitive to changes in L. 

Knowing the exponents t and x, we can calculate the power density 
spectrum (5) of the total avalanche currents. If r + 2 x <  3, a 1 I f  a (non- 
stationary) noise sets in. In our case t + 2x = 2.535 + 0.04, so a l / f  2 noise 
is expected. It is important  to note that in the model without local viola- 
tion of conservation t + 2 x =  2.38, and thus our model has a somewhat 
"less divergent" spectrum. In Fig. 5, the measured power density spectrum 
for several system sizes is plotted. It  can be seen that it has a 1/f 2 
dependence with a cutoff at low frequencies where the spectrum becomes 
white. This cutoff is due to the finite size of the system and it corresponds 
to the upper cutoffs of the avalanche lifetime distribution functions. 

Fig. 4. 
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Avalanche lifetime vs. size for all considered lattice size for R =0. We get x = 
0.58 _+ 0.01 for the exponent described in Eq. (12). 



Cascades and Self-Organized Criticality 931 

U3 

1 0  9 I I I l l l l l l ]  r t l l H r l [  E f I IL I I I ]  I I I I I I r q  

. . . . . .  . . .  

1 0  7 ___- ". 

I O a ....... ".. = . 

1 0  5 "." 

z 

10a~ .'.'. �9 ii �9 
�9 �9 z 102  ":. :'.. 

e l  

i01~ "." 
lO0~IIIl I IIILLUI !rr i iHr [E~EIml i JlIHHI 12Ll l [ I I  

10 .4 10 -3 10 2 l0 1 100 l01 

Fig. 5. The total power density spectrum of the system of avalanches; R=0. It is a 
Lorentzian-like spectrum, dominated by the longest avalanches. L = 16, 32, and 64 from the 
bottom to the top. 

5. S U M M A R Y  A N D  D I S C U S S I O N  

We have demonstrated that self-organized critical systems can be 
considered as special cascade-forming phenomena where the transfer ratio 
is just critical (R = 0). In many physical systems R has to be fine tuned in 
order to achieve the desired criticality. As examples, nuclear reactors, 
avalanche diodes, and lasers have been mentioned. When comparing with 
usual critical phenomena, R plays the role of the reduced temperature or 
some other relevant field. Together with the external flUX, (16) which has to 
be infinitesimally small, we have now a full two-parameter scaling 
framework. 

We have numerically investigated the approach of criticality for R < 1 
and obtained exponential decay in the avalanche size distribution with 
characteristic avalanche sizes which diverge when r :* 1. The parameter 
describing this divergence can be considered as a critical exponent. An 
interesting and nonunderstood feature is that the average height <z>(R) 
does not seem to approach continuously its value for R = 0. 

In the other case, when the global conservation was maintained 
( R = 0 ) ,  but local fluctuations were allowed, we obtained exponents 
significantly different from the homogenous case. This is reminiscent of the 
situation of dynamic critical phenomena where the universality classes 
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depend also on the conservation properties of the order parameter. Since 
the phenomenon we are investigating is intrinsically dynamic, all exponents 
seem to depend on the kind of characteristic conservation law. 

Our numerically observed exponents are very close to ~, = 1, r = 3/2, 
and y = 2, the latter being the mean field exponents of the problem. (12'14' ~6) 
It would be interesting to see whether our system is indeed a mean field 
one and if it is so, why the critical dimension is shifted down at least to 2. 

Even with our new exponents the inequality criterion (5~ for a non- 
trivial noise spectrum is not fulfilled. However, it seems that the changes go 
in the proper direction and therefore further modifications along the given 
line could be promising from this point of view. 
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